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exact quantum motions for coupled parametric oscillators
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Department of Physics Education, Seoul National University, Seoul 151-742, Korea
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Abstract. For N -coupled generalized time-dependent oscillators, primary invariants and a
generalized invariant are found in terms of classical solutions. Exact quantum motions satisfying
the Heisenberg equation of motion are also found. For number states and coherent states of the
generalized invariant, the uncertainties in positions and momenta are obtained.

In the time-dependent coupled oscillator system, the invariant method is powerful in
analysing the quantum mechanical behaviours. The Lewis–Riesenfeld (LR) invariant [1, 2]
has been derived by various methods such as time-dependent canonical transformations [3–
5], the Noether theorem [6], and Ermakov’s technique [7]. While the LR invariant is
quadratic in position and momentum operators, the primary invariant found in [8] is linear
in the operators.

The primary invariant is so simple in structure that it may be useful in studying time-
dependent coupled oscillators. Recently, the Ermakov–Lewis invariant has been constructed
using amplitude–phase decomposition in a coordinate–coordinate coupled system [9]. For
the most general form of coupled oscillators which includes any couplings of coordinates
and momenta, the LR-type invariant was found using the canonical transformation [3] and
the first-order invariant was constructed using the Noether theorem [10].

In the Heisenberg picture, the quantum motions of position and momentum in a single
oscillator system have been found in [11], where the LR invariant exhibits the time-
independency explicitly. In this letter, we extend the previous work [11] to the coupled
oscillators. Since the coupled parametric oscillator system studied here is the most general
form, our results will be applied to the studies in quantum optics as well as in atomic and
molecular physics. We construct primary invariant and LR invariant in terms of classical
solutions and find the time-evolutions of position and momentum operators which are the
solutions of the Heisenberg equations.

Let us consider a general oscillator-type Hamiltonian

H(t) = Aµν(t)zµzν + Bµ(t)zµ + C(t) (1)

where the matrixAµν is real and symmetric. As a unified notation for the coordinates in
phase space, we use{zµ}: qi = zi, pi = zN+i . Here all Greek indicesα, β, . . . range from
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1 to 2N and Latin indicesi, j, . . . range from 1 toN . The symplectic matrix [εµν ] and its
inverse matrix [εµν ] are defined by

ε ≡ [εµν ] =
(

0 1N
−1N 0

)
[εµν ] =

(
0 −1N

1N 0

)
(2)

where 1N is anN ×N identity matrix.
We look for the primary invariant of the form

b = vν(t)zν(t)+ u(t) (3)

which satisfies the invariant equation

∂

∂t
b(t)− i[b(t),H(t)] = 0. (4)

From this invariant equation and the commutation relation [zµ, zν ] = iεµν , we have a system
of the first-order differential equations forvν andu:

v̇ν + 2vσ ε
σρAρν = 0 (5)

u̇+ vνενσBσ = 0. (6)

Note that equation (5) is identical to the homogeneous part of the classical equation of
motion (Hamilton’s equation) for equation (1):

żcl,ν = −2zcl,σ ε
σρAρν + Bν (7)

with zcl,ν = ενρzρcl. For equation (6), the solution ofu is easily found by the direct integration

u(t) = u(0)−
∫ t

0
vν(s)ε

νσBσ (s) ds. (8)

If we represent the solution of equation (5) as a complex row vector, there exist
2N linearly independent solutions which we labelv(1)(t), . . . ,v(2n)(t). Combining these
solutions together we define the solution matrix

V = [vµν ] =
 v(1)

...

v(2n)

 (9)

which obeys

V̇ = −2V εA. (10)

This solution matrix is not determined uniquely because the linear combination of
solutions is also a solution. In other words, ifV is a solution matrix, so isCV with a
nonsingular constant matrixC. We choose the solution matrix of the form:

V = i

(−π∗ φ∗

π −φ
)

(11)

satisfying the following initial conditions with arbitrary parametersωi ,

φij (0) = 1√
2ωi

δij πij (0) = −i

√
ωi

2
δij (12)

whereφ = [φij ] andπ = [πij ] areN×N matrices. Then we have the following 2N -primary
invariants

bµ = vµν (t)zν(t)+ uµ(t) (13)
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which satisfy (i)bi = bi, bN+i = b†i (ii) [ bµ, bν ] = vµα vνβ iεαβ = εµν . These conditions (i)
and (ii) mean that we can interpretbi(bi†) as the annihilation (creation) operator. Inversely,
position and momentum operators are given by

qi(t) = φij (t)bj − φij (t)uj (t)+ h.c. (14)

pi(t) = πij (t)bj − πij (t)uj (t)+ h.c. (15)

where we have used

V −1 = iεV T εT =
(
φ φ∗

π π∗

)
. (16)

With the first-order invariants, the LR-type invariant is constructed as

I =
N∑
i

ωi

(
b
†
i bi + 1

2

)
. (17)

The eigenstates of the invariant (17) are the number states

|n〉 ≡ |n1, . . . , nN 〉 =
∏
i

b
†ni
i√
ni !
|0〉 (18)

where the state|0〉 is defined, as usual, by

bi |0〉 = 0 for i = 1, . . . , N. (19)

Further, we define the coherent state as

|α〉 =
N∏
i=1

e−|αi |
2/2

∞∑
ki=0

α
ki
i√
ki !
|ki〉 (20)

which satisfies

bi |α〉 = αi |α〉. (21)

In the Heisenberg picture the time evolution of the system is described by the time
evolution of the quantum operators. By equating the invariants (13) at two different times:

vµν (t)z
ν(t)+ uµ(t) = vµν (0)zν(0)+ uµ(0) (22)

we deduce the quantum evolution of the Heisenberg operators

z(t) = V −1(t)V (0)z(0)− V −1(t)[u(t)− u(0)]. (23)

By direct differentiation, it is easily checked thatzµ(t) satisfies the Heisenberg equation of
motion i d

dt z
µ = [zµ,H ]. In the explicit form of positions and momenta, we obtain

qi(t) = −iφij (t)π
∗
jk(0)qk(0)+ iφij (t)φ

∗
jk(0)pk(0)− φij (t)[uj (t)− uj (0)] + h.c. (24)

pi(t) = −iπij (t)π
∗
jk(0)qk(0)+ iπij (t)φ

∗
jk(0)pk(0)− πij (t)[uj (t)− uj (0)] + h.c.. (25)

These results can be easily obtained from (15) replacingbi by (13) att = 0.
Now we examine the quantum properties of the eigenstate and the coherent state. The

variations in position and momentum are given by, for the number state (18),

〈n|(1qi)2(t)|n〉 =
∑
j

(2nj + 1)|φij (t)|2 (26)

〈n|(1pi)2(t)|n〉 =
∑
j

(2nj + 1)|πij (t)|2 (27)
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and for the coherent state (20)

〈α|(1qi)2(t)|α〉 =
∑
j

|φij (t)|2 (28)

〈α|(1pi)2(t)|α〉 =
∑
j

|πij (t)|2. (29)

Furthermore the expectation values of the position and the momentum for the coherent state
are

〈α|qi(t)|α〉 = φij (t)αj − φij (t)uj (t)+ c.c. (30)

〈α|pi(t)|α〉 = πij (t)αj − πij (t)uj (t)+ c.c. (31)

which are the same as those of the classical motion.
Finally we suggest that our formalism can be applied to the following type of

Hamiltonian

H(t) = Aµνaµaν + Bµaµ + C (32)

where

Aµν = Aρσ3ρ
µ3

σ
ν ,Bµ = Bρ3ρ

µ. (33)

Here we have introduced the creation and annihilation operators defined with an arbitrary
parameterλ by

qi =
√

1

2λ
(ai + a†i ) (34)

pi = 1

i

√
λ

2
(ai − a†i ) (35)

or in the unified notation(ai = ai, a†i = aN+i )
zµ = 3µ

ν a
ν (36)

with

3 =
( √

1
2λ1N

√
1

2λ1N
1
i

√
λ
21N − 1

i

√
λ
21N

)
. (37)

In summary, we find the primary (first-) and second-order (LR-type) invariants of the
N -coupled generalized time-dependent oscillators. Using the primary invariants, we find
the exact quantum motions for the position and the momentum operators satisfying the
Heisenberg equation of motion. The primary invariants give a very simple method to
find the quantum motions. We also studied the quantum properties of the eigenstates and
the coherent states for the LR-type invariant. As in the case of the single parametric
oscillator [11–13], the classical solutions give all the descriptions of the corresponding
quantum system.

This work was supported by the Korea Science and Engineering Foundation and the Center
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